complex - 約束事その他の説明 - Linux コマンド集 一覧表
名前
complex - 複素数の数学の基礎
書式
#include <complex.h>
説明
複素数は z = a+b*i の形式の数である。 a と b は実数であり、
i は i = sqrt(-1) つまり i*i = -1 の関係を満たす。
複素数を表現する別の方法もある。実数の組 (a,b) は X座標、Y座標で
指定された平面上の点と見ることができる。この同じ点は、実数の組
(r,phi) で表すこともできる。r は原点 0 からの距離であり、phi は
X軸と 0 と z を結ぶ線分がなす角である。このとき、
z = r*exp(i*phi) = r*(cos(phi)+i*sin(phi))
の関係が成り立つ。
2つの複素数 z = a+b*i, w = c+d*i に関する基本演算は次のように定義される:
- 加法: z+w = (a+c) + (b+d)*i
- 乗法: z*w = (a*c - b*d) + (a*d + b*c)*i
- 除法: z/w = ((a*c + b*d)/(c*c + d*d)) + ((b*c - a*d)/(c*c + d*d))*i
-
ほとんど全ての数学関数に関して複素数版があるが、 複素数専用の関数も幾つかある。
例
使用する C コンパイラが C99 標準をサポートしていれば複素数を使うことができる。
-lm をつけてリンクすること。虚数単位は I で表現される。
/* exp(i*pi) == -1 となることを確認する */ #include <math.h> /* for atan */ #include <complex.h> main() { double pi = 4*atan(1); complex z = cexp(I*pi); printf("%f+%f*i\n", creal(z), cimag(z)); }